CHAPTER THREE
WHAT IS SOFTWARE QUALITY?

What is software quality? Well, the answer is that it depends on who
you are asking. If you ask the user of the software, you will most likely
get answers like, “it does what I expect it to do”, “easy to use”, “no
bugs”, “fast in response”, and “reliable”. If you ask the IT-guy, you will
get answers like, “easy to install”, “secure”, and “regularly updated”.
If you ask the CFO of a company, you will hear “cheap” or “high return
of investment”. If you ask the software developer, you will get
answers like, “readable code”, “understandable code”, “neatly coded”,
“version-controlled”, and “proper design”. If you ask the project
manager of this development project, you will get answers like “in
time” and “within budget”. This begs the question: who is right? I
have got some news for you. All of them are right, exemplifying the

diversity of software quality.

-74 -

WHAT IS SOFTWARE QUALITY 75

The quality of a system is the degree to which the system
satisfies the stated and implied needs of its various stakeholders,

and thus provides value.

retrieved 08-March-2020, https://iso25000.com

The 1+3 Software Quality Model

To address all the different needs of stakeholders in software quality,
[would want to introduce the 1+3 Software Quality Model (1+3
SQM).

Four quality-types are defined in this software quality model:

e Product Quality
e Design Quality
e Code Quality

e Organizational Quality

The reason why this software quality model is called the “1+3 SQM”
is because one of the quality types (Organizational Quality) is the
enabler of the other three quality types as reflected in Figure 3.1.

Product Quality

Product Quality is the quality of a product as perceived by the
customer or user, thus implying the visibility of this quality type. A
typical quality characteristic for Product Quality would be whether
the product is behaving according to the expectation of the user,
taking into account the fact that the product might be used from

different perspectives.

76 CHAPTER THREE
Product Quality entails building the right product bereft of problems
Or errors.

Given that Product Quality is as perceived by the user or customer,

one could infer that it is the external quality of the software.

Figure 3.1
The 1+3 SQM

= | craftsmanship
WiiraT] collaboration SRS
I
the best ‘ right mindset
tools

@ m - < sy

mature prT— education stable
processes

ENABLES

separation
of concerns

functional
suitability

clean code portability

static code analysis

WHAT IS SOFTWARE QUALITY 77

Design Quality

Design Quality of software is the quality of the software design, which
does include the architecture. As discussed in Chapter One “What is
Software?”, separation of concerns is an important design principle
applied in software development. A typical quality characteristic for
Design Quality would be the efficacy with which the separation of
concerns is applied in the design of the software at different design

levels.

Design Quality is about mitigating complexity and understanding the
structure of the software along with its internal dependencies. A
software program with high levels of Design Quality is easier to

maintain and to extend with new features.

Design Quality is not visible at the outside of the product and as such,

it is internal quality of the software.

Code Quality

Like Design Quality, Code Quality refers to quality which is not

outwardly visible; it is as well an internal quality type of the product.

Code Quality pertains to understandability of code. It is about how
well the code is structured and written such that the reader of the
code understands this code’s intent and operation. It is important
because software engineers constantly read existing code as part of
writing new code. They need to understand the existing code to be

able to apply changes or to add new code.

Code of high quality is called Clean Code, which means it works, it is

easy to understand and it is easy to modify and test.

78 CHAPTER THREE

Organizational Quality

The fourth type of software quality is of a different type. You might
even consider it not being part of software quality, yet it is the most
important quality type you can have. Here, we are talking about
Organizational Quality: the ability of your organization to develop
and maintain software. Organizational Quality can be divided in two
subtypes: the developers’ competence and the organization’s

competence.

Developers Competence

The most important part of Organizational Quality is your
developers’ competence level; the level of craftsmanship and
professionalism of your developers. How well they know the domain
of the software to be developed, how well they know the design and
code of your product, the level of knowledge of used technologies,
and their analytical skills to solve problems. In addition, their social
skills and their ability to communicate effectively and collaborate
well in the team are also important skills. Basically, the developers’
competence is the basis for achieving good quality. Lack of developer

competence is a guarantee for low software quality.

Organization Competence

To get the best out of the developers, the organization needs to
provide an environment in which developers can flourish. It is
important to provide a suitable environment of engineering
practices, processes and tools. However, providing a culture in which
developers feel secure, safe and appreciated is equally important. A
culture, in which this is not the case, can completely kill the

productivity of developers.

WHAT IS SOFTWARE QUALITY 79

Enabling Quality

One could even state that if Organizational Quality is of very high
level, the other three quality types do not need special attention. By
means of the high level of craftsmanship and professionalism of your
team, you will have high levels of Product Quality, Design Quality and
Code Quality.

The level of Organizational Quality is the enabler or, worse case, the
disabler of all three other types of software quality. As such, it is the
enabling quality.

The Icons in the 1+3 SQM

The icons used in the 1+3 SQM illustrate important aspects for each
quality-type. It does not have the intention of being complete, but
provides examples for each quality type to help a better

understanding of what software quality is.

The Icons of Organizational Quality

% Craftsmanship represents the skill a software engineer uses
to develop high-quality software. Craftsmanship is part of
Organizational Quality, and is perhaps even the most important part
of it.

C-f St ;)
With the right mindset, people will do the right things; for

example, a mindset to create Clean Code.

80 CHAPTER THREE

@ A Known Target might be implemented by a Sprint Goal. It

sets the direction and focus for the team.

ﬁ A cultureis important to enable people to flourish. How about
a collaborative oriented culture? Or, is a competence-oriented
culture more appropriate to your organization? Or perhaps even a

control-oriented culture as in regulated industries?

Software programs are too big to be developed by only one
person. Therefore, collaboration is important; within the team itself,

but also with its stakeholders.

The best tools help you in doing your job. It is important to
use the best tools. It is like with a carpenter: the saw needs to be

sharp, otherwise it is quite difficult to saw through the wood.

% A Stable Infrastructure of network and tooling is important
for the development team. If the infrastructure is instable, each and

every engineer will be hampered.

<

be able to develop high-quality software. Education is an enabler in
this.

Education is the basis of knowledge. Knowledge is needed to

WHAT IS SOFTWARE QUALITY 81

(=]
2]
Elg)

A way-of-work is inevitable, whether it is an informal
working together or a formal well-defined and documented process.
Agreements as mature processes on how to develop the software

need to be made in the team, and followed up.

The Icons of Product Quality

b

-jl It is so important to build the right product: a product that
complies to the expectations of the users, illustrated as functional
suitability.

}B
* Software should be intuitive, in a way that it is easy to use.
The usability of the software needs to be high.

N
'" The software should run stable without bugs. Especially in

safety-critical software you cannot afford systems failing. Therefore,

high reliability is required.

and devices are connected through the internet, security is very

In a more and more connected world, in which computers

important to prevent malicious parties from misusing these

connected systems.

82 CHAPTER THREE

The Icons of Design Quality

H One of the most important design paradigms for software
development is Separation of Concerns, which mitigates complexity

and is very important to be able to implement huge software systems.

% High-cohesion and low-coupling are an important design
paradigm to apply in software design. If applied in the right way, it

will lead to modularity in systems.

@ In particular for software systems on which years or even
decades development continues, maintainability is important.
Maintainability is related to Technical Debt. High levels of Technical

Debt decrease the maintainability of the system.

&

QQ? The structure of the design of the software has a big influence
on the utilization of resources like CPU-cycles and memory

illustrated by this efficiency icon.

The Icons of Code Quality

T

modify and test. Source Code should be written such it is understood

Clean Code is code that works and is easy to understand,

by other people.

WHAT IS SOFTWARE QUALITY 83

[l

information about certain aspects of code quality like information

Static code analysis tools analyze the source code and provide

about complexity or warnings for errors.

Unit tests are an integral part of the programming of code. In
addition to the fact that solving errors, found by unit tests, is
relatively easy, unit tests provide an environment in which code can

be refactored in a ‘safe’ manner.

&P

Portability refers to the capability of software to be ported to
a different hardware and/or software platform. By nature,

programming languages differ in terms of portability.

Transcendent Quality vs. Modeled Quality

Another view on quality could be transcendent versus modeled

quality.

Transcendent Quality

Transcendent considers quality as something that is intuitive
understood but nearly impossible to communicate, such as

beauty or love.

S. Thomas Foster — Managing Quality: Integrating the Supply Chain

Transcendent quality is the type of quality which is understood by

mind but difficult to articulate in words. It is subjective and thus,

84 CHAPTER THREE

perceived by the observer. Having a look at the 1+3 SQM, one could

think of examples of transcendent quality.

As an example, the quality of the intuitive usability of the software is
transcendent quality in Product Quality. It is a subjective quality as
perceived by the user. Some users will love the usage of a software

product while others have difficulties in using it.

For Design Quality, one could consider the quality of the intended
design as transcendent quality. Given that software provides many
different ways of solving a problem, many different designs are
indeed possible. Which is the best and why? Should you use Object
Orientation or functional decomposition in your design? For practical
purposes, software developers many times argue about best

solutions in design.

Readability and understandability of code, or meaningful names of
functions and variables in code, are examples of transcendent quality
in Code Quality. Again, software developers can argue incessantly

about the coding style.

[would like to mention craftsmanship as an example of transcendent

quality in Organizational Quality.

Modeled Quality

Modeled quality is (kind of) objective and can be measured or
monitored. Also, for modeled quality, one could think about different
examples for each quality type out of the 1+3 SQM.

The number of found defects by testing would be an example for

Product Quality, or even the number of found and not solved defects.

WHAT IS SOFTWARE QUALITY 85

For Design Quality, one could think about the number of
dependencies between components as a specific example for

modeled quality.

Meanwhile the number of unresolved compiler warnings or coding
standard violations as measured by static code analysis tooling is an

example of modeled quality in Code Quality.

For Organizational Quality, the level of education in the field of
software engineering of your developers is an example of modeled

quality as well.

Both need to be considered

Later on in this book, there is a chapter on “Measuring Software
Quality” (page 234). You would like to measure your software quality
to get an opinion about it. One should consider both, transcendent
and modeled quality to get an opinion about the level of software
quality. There is a risk, when starting measuring, that the

transcendent quality will not be considered.

1ISO-25010

[SO-250103! is the quality model for software products as defined by

the International Organization for Standardization (ISO).

The stated and implied needs of various stakeholders are
represented into characteristics in the [SO-25010 software product

quality model.

31 https://is025000.com/index.php/en/iso-25000-standards/iso-25010

86 CHAPTER THREE

The represented characteristics in the ISO-25010 are as follows:

e Functional Suitability

e Performance Efficiency
o Compatibility

e Usability

o Reliability

e Security

e Maintainability

e Portability

The ISO-25010 model provides a different view on software quality
as the 1+3 SQM does. However, there is a clear relationship between
them, as expressed in the following table and a more detailed

description for each ISO-25010 quality characteristic.

Table 3.1
ISO-25010 vs 1+3 SQM

ProductQuelty DesignQuaity Codeually Orgenizaiona Quelly

Funciional Suitability X X
Performance Efficiency X X X X
Compatibiity X X
Usability X X
Reliability X X X X
Security X X X X
Maintainabilty ¥ X X
Portabilty X X X X

WHAT IS SOFTWARE QUALITY 87

Functional Suitability

How well the software product complies with the expectation of the
product user, is reflected in this quality characteristic. You could
think about completeness of features and usability. Typically, this
quality characteristic is covered by the product’s functional

requirements. In the 1+3 SQM it is covered by the Product Quality
type.

Performance Efficiency

Performance efficiency reflects the performance of the software in
the context of available resources, such as memory and CPU-cycles.
Especially in embedded devices, it is possible to have constrained
resources for costs reasons like limited memory and small computer

chips.

Performance efficiency is experienced by the user (possibly slow
software with long waiting times) and highly influenced by design
and code decisions. It requires additional skills and a sound
understanding of the manner in which software runs on specific
computer architectures, for which it has a strong relationship with all
quality types of the 1+3 SQM.

Compatibility

This quality characteristic reflects how well the software
collaborates with other systems. In many cases, this is accomplished
by using standardized interfaces. Running a web-page or web-
application in different browsers is an example that fits this quality

characteristic.

88 CHAPTER THREE

Usability

Ease of use is important in order to ensure success. Intuitive user
interfaces assume significance for the product. In the ISO-25010, this
is covered by the usability quality characteristic contained by the
Product Quality type in the 1+3 SQM. However, one needs to put lot
of attention to user experience (UX) analysis and practices in the

development, to achieve high levels of usability.

Reliability

Product maturity is clearly expressed by reliability. One important
aspect of reliability is availability. For some systems, it is a
requirement that they are available 24 hours a day and 7 days per
week. Achieving such high availability requires high reliability and a
high fault tolerance or recoverability in cases errors do occur. Error
handling should be addressed explicitly in the design and the code of

the product in order to achieve high levels of reliability.

Security

As products get more and more connected to the internet, security
becomes increasingly important. Security is about being secure
against being hacked. More specifically, it is about handling data in a
manner that cannot and will not be abused. It is about authenticity,
to ensure the system communicating with is the one it claims to be. A
clear example here would be car-to-infrastructure communication. If
the software of your car communicates with a traffic light, better be
sure that the system communicating with indeed is the traffic light

and not a hacker trying to deregulate traffic.

WHAT IS SOFTWARE QUALITY 89

Security is related to Product Quality as users request secure
systems. It is also related to the Design Quality and Code Quality
because design and code need to be setup and created in order to be
secure. Next, this requires additional specialized skills in addition to

normal software engineering skills.

Maintainability

How well the software can be maintained and extended with new
features is reflected by this quality characteristic. Clearly, this one
pertains to the internal quality types Design Quality and Code
Quality. Specifically, it is related to Technical Debt, which will be

addressed more extensively at a later stage in this book.

Portability

Portability refers to the capability of software to be ported to a
different hardware and/or software platform. Portability is also
determined by the choice of programming language, e.g. Java is
portable on different hardware platforms while programs in C are
less portable. In particular, C-programming used constructs in coding

to determine the level of portability.

90 CHAPTER THREE

Summary

Software quality can be considered from different viewpoints
because different stakeholders have different needs. The 1+3 SQM is
a model that defines four quality types: Product Quality, Design
Quality, Code Quality and Organizational Quality.

Organizational Quality is the equivalent of the organization’s
capability to develop software, therefore enabling the other three

quality types which are an integral part of the software product itself.

Design and Code Quality are internal quality types as they are not
visible by the user of the software.

Product Quality refers to the level of quality as perceived by the user

of the software and as such external.

When considering software quality, it is important to remember that
some aspects of software quality cannot be measured as such due to
their inherent subjectivity. These aspects are called transcendent
quality and should not be neglected by myopically focusing on what

can be measured.

[S0-25010 is a well-known quality standard for software products. It
defines as many as eight different quality characteristics which may

be of interest.

