Table of Contents

09 U0 o0 10 Lot 0 o FPU T i
Why this DOOK? ... i
Who should read this book?.........onnneneneneresereneen iii
How this book is organized. ... iv

Chapter ONE...eeressesess s ssesssssens 1

What iS SOftWAre? ... ssesssssseenns 1
Programming Languages.......ccmensesenssnsssssssesssssnens 1
Huge Software Programsoenneeneeneenesssensssessesseenes 5
Separation 0f CONCEINScunerenmeneeresssssssessssessessssesssssssessssssseans 6
PN 0 1S) = ot (0) o PO PP 8
From Requirements toward Softwarecccvveeneereeneeneens 9
DESIZN o 10

The desired designcceevciiieicciiieccee e 11
The intended designcocveeeiecieiieneeeee e 11
The implemented designccccuvevieciieee e 11
SOUICE COAE .t sessessnnsesnns 12
Execution Paths........cccviviiniiiiiinii 12
Configuration Management.........ccoveneereeneeneeneesersessessessessennes 15
Version Control of Source Code.......cc.coueriernierneenecnieeneeneenn 16
Configuration as Code........ccccviiiieiiieeeciiie e e 18
SOftware diVersityeccccieeeeeieee e 19

Build, Installation and Deployment.........ccccoveeeenerevcereerenen. 20

Build, installation and deployment on a small embedded device

Build, installation and deployment on a personal computer....24

Build, installation and deployment in the Cloud 24
Open Source SOftWare.......ooenceneeneeneesersessesseesessessessessessesseens 25
OSS lICENSES ettt ettt ettt et e st e e e 26
(010 o1V 1=] & USRI 27
PEIMISSIVE ...eeiiiiiee et 27
Risks Of USING OSSvviiiiiei et 28
Snippets and librariescccocveeeeeviee e 29
0SS MaNAaBEMENT....cciiiiiiiiiiiiiiiiiiiieieieeerererererererere e 31
Software versus Hardwarenneneeneneeneneeseeneeneens 31
Software is intangible, hardware is tangiblecc.ccccoeveennen. 31
LaWSs Of PRYSICS...uuiiiiiiiiie ittt e 32
Software instantiations are identical, hardware instantiations
EVIATE. .eeieiiecee e e e 33
Producing, storing and distributing software is cheap.............. 33

Manufacturing of software is an integral part of development 34

Software development “never ends”cccoeeeeeiieeeecciieecennee, 34
SOftWATE TYPES oot sessesssseens 35
SYStemM SOTEWAIEvveiiiiiiee e 35
Application SOftWare.......c.ueeieeciiee e 36
The CloUd ... 36

N 0000000 E= 38
CRAPLET TWO ettt ssssesnans 41

Software Development Life CycClecummnnnneeneeneeneeneeneenes 41

SPITAL e ———— 44
AGILE o ———————— 46
SCIUM o 48
SCrUM TEAM ettt 49
Product Backlogccoccuviiiiiiiiii et 50
Definition of Readyccuvvvvieiiiiiieiiieicces e 52
SPriNt BaCKIOg «..veeeeeviieeeeieee et 53
Definition Of DONE....c..ciiiiiiieieeeeee e 53
SCrumM MeEEtiNGS «oooeeeeeeeeee e, 54
SCAlING SCrUM .cviiiiiiiie e erree e e saraee e 55
Scaling AGile..... s 57
SAFE e 57
[010) 010 010 (020 L] GO 61
DeVOPS. . —————— 63
The Stacey MatriX. ..o 64
Product Lifecycle Management........c.ocneeenerncenmenenssesssnnenns 67
INNOVALION ... 68
ANAIYSIS oo e e 68
DEVEIOPMENT .oeieiiieeeee e e 68
[DT<T o] [o]Y] 0 o<1 o | PSS 68
MaiNtENANCE ...ooiiiieeeee e e 69
ENd OF lif@ 1.t 70
SUMMATY . —————— 71

Chapter TRIEE.. .. seaees 73

What is Software QUality?......ccoomnneessessssens 73

The 1+3 Software Quality Model......c.coovrnenreneererneennenreenns 74
(e To [UTo1 A @ U | 1 Y U 74
DeSIgN QUATILY ..evvieeeciiiie e e 76
Code QUANILY .eeeeeeiiee e s 76
Organizational QUalityccceveeiieiiiniieeeeeeee e 77

The Icons in the 143 SQM.....rererrerrrereeeeeseeseeeene 78
The Icons of Organizational Quality........cccceeeeeiieeieciieeicciieeeas 78
The Icons of Product Quality......ccceecveeeiiiiieeiiiiee e, 80
The Icons of Design QUalitycceevvcuiiieiiiiieeicieee e, 81
The Icons of Code QUAlItYcccueeierreenieiieiie e, 81

Transcendent Quality vs. Modeled Quality.......ccocvereurenneen. 82
Transcendent QUAlIty......cceeeieeieee e 82
Modeled QUAITILY ...oceecuvieeeeiiie e 83
Both need to be consideredccccoeeriiniiniiiieenee e 84

| O LY 01 TP 84
Functional SUitabilitycccceeeeciiiieccee e, 86
Performance Efficiency.....ccueeeeciieeicciieeccieee e 86
CompPatibility...cccccuieeeceeccce e 86
US@DIlItY coveeiiee e 87
Reli@bility .o 87
SECUIIEY ettt 87
Maintainability......ccoecuieeiiciiieee e 88
POrtability.....cceeeciieeeeiiie e 88

SUIMIMATY ot 89

Chapter FOUT ..t seses 91

Total Cost of QUAlItY ... s 91
Cost of Implementing QUalitycveerenreneeererseesessersesseeneens 92
Product QUAlItYeveveeeeiiiiiciiee e 92
DesSigN QUAlILY .oeeeeeeeeeeiee e s 93
Code QUAlILY....ueee e 93
Organizational QUalitycccoecieeiieiiecccee e, 94
Cost of Rectifying Poor Quality ... 95
Product QUAlILYceeeeeiieeeeiee et e 95
Design QUAlItY .oeeeevieeeciiee e 95
Code QUAILY..uueiiieiiee e 95
Organizational QUalitycccoecveeiieiieceee e 96
Total Cost Of QUAlILY ...ceveereereereererrerrerree e sessensesennes 96
Product QUAlItYceeeeeuiiieeeiiee e e 98
Design Quality & Code Quality.......cceeeecuveeeeeciieeeeciiee e, 99
Organizational QUalitycccceciieeieieeecceee e 100
Different sweet SPOtS?....ccivcieiiieciie e 100
Determining your sweet SPOtvvvvvviviririiiieiireeenieieeeeeeeeeennn 101
SUMMATY .ot 102
Chapter FIVE .. sssssssssssessssans 105
0D 170 D<) o PSP 105
COSt Of Changececeeereeeerrereese s 107
Quality Debt EXamples......coomeenncenernseeeseeeesssssesssesssenns 109

Product QUAlity ...eeeeeeeeeeeiieeeee e 109

Design QUAlItY ..cevveeieiiei e 109

Code QUANILY .ueeeeeiieee e e 112
Organizational QUalitycccoveiiiiieeiicee e 114
Technical Debt ... 115
Technical Debt QUAdrantsc.ccoeeerierreesieseeneneeeeeeeene 116
SUIMMATY oot sesssss s ssssessssesssssens 118
00 0 E=) 01 =) G - TPV 119
Mitigating Technical Debt ... 119
Creating Awareness of Technical Debtcccooorrerenennes 120
The importance of Clean Design and Clean Code.................... 120
Complexity and the Speed of Software Development 123
UNderstood DESIZNuvuvieieeiieeciiiiee et e e e 126
Technical Debt and Developer Morale.........ccoocerernerrieens 127
Causes of Technical Debt........covnrenenenerenerenesereeresnees 128
Nature of the BUSINESS........ccoeeriiriiiiiiieeee e 128
Change in CoONtEXE.....ccciieeieiiie et e 129
DeVelopPMENT PrOCESS ...cievvrieeeciiieeecciiee e eeree e evee e e sree e e 129
People and TeAMccuuieieiciiee e e e 130
Software Craftsmanship....... 130
Building a Clean Design and Clean Code Mindset 132
Software Engineering Practices........conemrneenreeneensesseeneens 133
Requirements ENGINEEriNGcccovvvviiiiiiiiiiiiiiiieceee, 134
Model VisUally........coocuiiieeiieeeeieee e 136

APPIY Patterns.....cooeeiieeeee et 138

Architecture Risks ANalysiscccceveiriiieiiniiiee e 140

Communicating and documenting your architecture.............. 142
SOLID ..ttt st st s 145
ApPPlY Clean Code . .uiiiiiiiiiiiii ettt 148
PEer REVIEWING ...eviiiiiiiiiiiiieee ettt 149
Traceability....ccoecviieieiiee e 151
Refactoring and Restructuring.........ccccoeeeeecieeecciiee e 156
Static Code ANAIYSIS ...eeeeecueieeeeciiee e 159
Static Design ANalysiS......ccveeiiciiiieeeiiiee e 163

Strategic Adoption Model for Tracking Technical Debt165

UL 1T 166

NO TrACKING c.evieii it 166
Ad-hOC .ot 166
SYStemMatiC ..o 166
MEASUNEA ..ottt 167
institutionalizedcccocvviiviiiiiinii, 167
fully automated.......cccuviiiiciieece e 167
Putting Technical Debt in Context.......oovmreereereeseerennens 168
SUMMATY .. ———— 169
Chapter SEVEN.....oereereeeer s sssssssssans 171
Testing and BUgsccvrerenenererereeeesesessessessessessessessessessessessenns 171
BUZS s 171
HeiSENDUES.....cocereerceer e 174
Managing Defectsnsssssssssssssssesees 175

Debugging — scope matters.cccccvvvvcieeeiniieee e 176

DebUg-aCtiVItiesccccuieieeciiee e 180
TESEING vt —— 184
Alternative Test SCENArios.crererneeresnessessessessesressessenns 185

HAPPY FIOWS oo 186

Alternative FIOWS.......coiiiiiiiiieeeeeeee e 186

S FIOWS ..ot e 186
Data driven test SCeNATioS ... rremmssessessssssessessesssseens 187

BouNdary teSTiNG......ccvveieeiiiie et 187

Equivalence partitioning.......ccccccveeeeecieee e 188
Short Feedback LOOPS......couremineeirnssseessesssssessessesssseens 189
Testing Pyramid........onenenneneeesssessessssessessssssssenns 190
Agile Testing QUAdIants........cuemrneeseeserssesssssessesessessesees 191
Test Driven Development........cereenenesenenensenessssesesnens 194
Behavior Driven Development........covnncnnenessenienennens 195
Graphical User Interface testing.......covrnenerneenerseereeneenes 197
00 0 - L0 T U/=T] 0 oL TR 198
Test Automation is Not For Freeonnvcnsncncnnnns 201
Artificial Intelligence in Test Automation.........ccceereenen. 202

Testcase SeleCtioNcocueeverieereeriee e 202

Self-healing tests......iiviiiiiciee e 203

UNit teStS e 203
SUMMATY oot 204

Chapter Eight ... sessessesees 207

Safety, Security, Legislation......nnnnneneensenesnens 207

Safety eNgiNEEriNGcovvciiiiiiciee e 209
ISO-26262.....ccceeiieieeieiiiiiiiiiiieeeeeeeeeeeeereeeeeeeeeeeeere e 211
SECUTILY ..t 212
WVUINErabilities ..ccouveeeiieeieeeie e 212
Organizations which Fight Exploitation of Vulnerabilities....... 216
Security ENgineering ..o, 218
=724 5] B2 1 (o) o U 222
New technologies require modified legislation....................... 223
Intellectual Property Rightscccceeeeecieiiiciieeeecee e, 224
Imposed legislationcccocceeiiieieeiccee e 225
Legislation in relation to safety and security........cccccecvveeennnee. 226
SUMMATY ..o 227
08 1 01 c) o\ 0o L 231
Measuring Software QUAality ... 231
Measuring What You Cannot Measure........c.ourereereereenens 231
Lagging and Leading Measurementscc.eneneesrerseense 234
Business Oriented Mmeasurements........ccccevveerieeeneeessierenneenas 235
Measuring Product QUalityc.ccmremerneeseeseensesseeseesresseenne 235
Customer feedback ..o 237
Found defects after deploymentcccccoeevveeecccieiicccieeccee, 238
Found defects during development.........ccccoevevecieeiiiieeecnee, 238
TeSt COVEIAgE .coiiiiiieiee e, 239

Measuring Design QUality ... 250

Models and design documentation..........cccoveeeeeeieicciieeeneenn. 251

Gap between intended and implemented design................... 252
Measuring Code QUAlityccmmrmeerernernernemrernesrersessessessesseenes 254
Understandabilityccceeeveiieiiiiiiieceeeec e 255
Static code analySiS.....cccuieiieciiee e 256
SECUIE COUR....uiiitiiiieiie ettt s e 258
Measuring Organizational Qualityccoumenrerernsenieneens 259
MOTAIE. et 260
EAUCAtION .ttt 260
Programming sKillS..........cccouveeiiiiiiiiiiiiee e 261
INFrastrUCtUIE ...covieieiiieiee e 262
PrOCESSES ..ottt 262

AV 2= 1o ol 1 4 T 264
DEPIOYMENT ..o 266
SUMMATY . ——————— 267
(00 F 1 01 7c) o) TP 271
Process Reference Models ... 271
0917 01 U SRRVTR 272
MatUFity [@VeIS .o 272
Practice Areascccouviiiiiiiiiiiniiiiiiie 273
Determining the CMMI Maturity Level.........cccooeveeeivcveeeennnee, 275
ASPICE... s 277
ProCessescoiviiiiiiiiiiiiiiiic 277
Capability [EVeIScei e 281

ProCesSs ASSESSIMENT ... se e sss e e sss e s e snssesseses 282

CMMI, ASPICE and AGIleonenereenereeneereeseeseesessesseesenens 283

The Usefulness of Process Reference Models 285
The power and the danger of a process reference model 285
SUMMATY .. ———— 287
Chapter EleVen...... s 289
Setting the Right Priorities ... 289
Enabling should have Highest Priority ..., 290
CULLUT oo nenees 290
INtrinsic MotivatioN........ccooviiiiiiiii e 295
ProfessionalisSmccccoiieiieiiiiiieeee e 298
Hiring the best ENGINEEers......ccccvecvveeiicciiee e 299
Reconsidering Operational Priority Setting...........ccee... 300
Ensure a Smooth-Running Development Environment........... 301
Mitigate Quality Debtcoccvviiieieiee 303
IMmprove ContinUOUSIY......coccvveiieciee e 303
Develop Functionalityccccueeeeecieee e 304

N 0000000 F: 1 o2 T 305
Chapter TWeIVE..... s 307
Infamous Software Failures ... 307
Mars Climate Orbiter crash ... 308
Boeing 787 Dreamliner Power Failure.........cccooeonenenennee. 309
Millennium BUg....ccoceenereneseesessesesssessessssssesssesssssesssessssnns 309
AZLL s 311

Unintended AcCeleration ... ineneseseesesssesessssesessssesens 314

RetroSpect ... 316
Chapter Thirteen ... sessees 319
FoOd fOr ThOUGht ..ot 319

Trial and Error Programming..........cceemenenesseenessessesnennes 319

PUNCH Cards ...cooueeiieeiieeeeeeeee e 320
PreSS FS i 321
The Best of Both WOrlds ... 322
Should Software Engineers be Certified?c.ccoverenennes 323
Low threshold to become a software engineer....................... 324
Software engineering is more than programming alone......... 324

A closer Look at Test Driven Development........c.ccocnenneee 325

Follow the Red- or the Green-line?.........cccoovnneneerenenns 330

Speed VErsuS PaACEovreneenieneeneineeseiseesesseesesssssesssesesssssssssanes 332

Qualification VErsus raceccceveereeneenienieeseeeesee e 333
Software Development.......ccueeeieciiie e 334
Pace versus speed, a balancing act........cccccovevevcieieiicieee e, 335
Process versus SKill........cnccvcsssvesessvesess s 336
Process and SKill........c.oovieieeiieneieeeee e 336
SOftWAre ENGINEET....cciiiiiieeieiieee ettt eree e e eae e e 337
ASPICE of CMMI[EVelcooiieiiieieee e 338
Software Estimates..., Why is it so Hard?.......ccccoovovenennee 339
Cone of UNCertaintyccccoecieeiecciie e 340

Puzzle @analogy ... 341

Chapter FOUItEeN ... 345

00 101 ' = 345
ADDIeviations ... ssssssssees 349
B 0 000 0= P 353
Bibliography ... 359
AcCKNOowledgments ... s 363
About the AUthOT ... ———— 365

INTRODUCTION

Why this book?

This book has been written during the COVID-19 crisis we all suffered
in 2020, a pandemic induced by the SARS-CoV-2 virus. It was
imperative to mitigate contamination to the maximum extent
possible by keeping distance and maintaining high levels of hygiene.
Besides being warned not to shake hands anymore, people were
asked to work from home office as much as possible. Inexorably,
working from home highly relied on IT, which, in turn, highly relied

on software running the internet.

[myself was working at Bosch heading a software development
group, where 90% of the engineers suddenly started to work from
home. Luckily enough, things went smoothly, whereas equipment
was taken home and based on a reliable networking infrastructure.
As a result, engineers could continue to work. Some of them were
needed in the office to support our big test systems, containing
hundreds of devices, but the majority could seamlessly work from
home, remotely accessing the code repository, the build machines
and test systems, while simultaneously using Skype and Teams for
communication and collaboration purposes. All of this powered by
software. In particular, it was during this period that I once again

realized how much we, as a society, depend on software....

Software is becoming increasingly important in our lives. Just cast
your glance everywhere where software is available and you will

conclude that software indeed runs (make that rules) the world.

ii Introduction

A proper look at your close environment will convince you that
software is ubiquitous. Your smartphone is run by software, your
computer is run by software, your vacuum cleaner is run by software,
your television is run by software, your car is run by software. Can
you imagine any device that is not influenced by software in some

shape and form?

Then, if you have a look at society, you will conclude that even more
is run by software. Financial systems are run by software, the
internet is run by software, public transportation is run by software,
air traffic control is run by software. Let’s face it, software runs the
world. Imagine a world that is bereft of software and you will struggle

to make sense of the world we live in.

On August 20, 2011, The Wall Street Journal published an article of
Marc Andreessen titled Why software is eating the world. In this
article, Andreessen describes the growing importance of software
worldwide, to the point of changing business models and destroying
complete industries. The influence of software on our businesses is,

to put it mildly, huge!

Due to this increasing influence of software, companies are starting
to realize that digitalization is not only a fact, but also a necessity.
Companies need to transform into software companies and upscale
their investment into software. For its irrefutably prominent role in

all aspects of our lives, the quality of software is paramount

When reading books and articles about quality assurance in software,
I often get the impression that quality in software is only about

testing. Well, in my humble opinion, it is not; software quality is much

Introduction iii

more than testing. Testing is a necessity because we are not able to

produce error-free software.

This book provides a holistic view on software quality. In addition to
addressing testing to achieve quality, it also looks into internal
software quality and even what enables quality. This book aims to
give an overall picture on what matters in software development and
why, without going into the pedantic details, which are described
much better in other books, like the ones mentioned in the
bibliography.

Who should read this book?

This book should be read by managers who manage software
development teams so that they understand why software

professionals make certain choices.

Specifically, it should be read by quality managers so that they know
which questions should be answered in order to validate the quality
of the software.

This book can serve as an aid for software professionals who need to
elucidate certain aspects of software development to management
with a non-software background and why certain choices need to be

made.

It should be read by recruiters, who need to recruit competent

software engineers despite lacking knowledge about software per se.

It can be used for education, especially in generic technical education

programs, such as Automotive or Health Care programs wherein one

iv Introduction

is trained to become a generalist in different engineering disciplines

rather than becoming a specialist in one specific discipline.

Finally, this book can be read by everybody interested in software
quality and wants to be convinced that quality is more than testing

alone.

How this book is organized.

The first two chapters of the book provide a basic overview on
software and software development lifecycles. If you are familiar
with software development, feel free to skip these chapters.
However, even if you are familiar with software, it still makes sense
to read these chapters. Still, they might make some implicit
knowledge explicit. These two chapters are specifically meant for
people who are not so familiar with software development, to
understand what software is and how it is developed. This
knowledge is needed for the remainder of the book.

In chapter 3, a model for software quality is introduced. A high-level
model covering external quality, as experienced by the users of the
software, in addition to internal quality as produced by the software
developers. And, last but not the least, it covers enabling quality; the
capability of an organization to develop software. This model is used
in subsequent chapters to explain the different aspects of software

quality.

Chapter 4 addresses the balance between investing in quality and
rectifying poor quality and associated costs. It is never a black and
white situation; it is always a matter of balancing driven by business

considerations.

Introduction v

Quality Debt is introduced in Chapter 5 of which, Technical Debt is an

important part.

Chapters 6 and 7 comprise practical suggestions for achieving and
maintaining quality. Chapter 6 addresses ways of mitigating

Technical Debt while chapter 7 addresses testing and defects.

A separate chapter, Chapter 8, is dedicated to safety, security and
legislation, simply because lack of quality of these aspects may have

severe consequences,

Meanwhile, Chapter 9 talks about measuring aspects of software
quality. How to get a notion of something which cannot be measured
as such.

Although processes are not the most important aspect of Software
Quality, the industry pays a lot of attention to processes to achieve
Software Quality. Therefore, Chapter 10 describes two important

process reference models used in software development.

With all of this knowledge in mind, one could reconsider how to set
priorities in a development team, which is addressed in Chapter 11.

To better understand the importance of the different aspects of
Software Quality, Chapter 12 covers some infamous software

failures.

Finally, after being provided with all this information about software
quality and what really matters in software development, some food

for thought is presented in Chapter 13.

[do understand that it might be difficult to read this book if you are

unfamiliar with software development. Unintentionally or even

vi Introduction

intentionally, I might be using jargon which is technical in nature. At
the end of the book, a List of Concepts is added which might help you

better understand these jargons when reading.

